姓名 | 李光洁 | 行政职务 | 无 |
系别 | 大学数学教学部 | 职称 | 副教授/硕导 |
办公电话 | 020-39326070 |
- 个人简介
- 科研成果
- 所获荣誉
- 教授课程
-
李光洁,广东外语外贸大学教师,博士毕业于华南理工大学。
研究方向: 微分方程及动力系统。现研究领域和兴趣主要是随机微分方程的稳定性、稳定化及数值仿真。
一、发表论文
[1] G. Li, Z. Hu, F. Deng, H. Zhang, Stabilization via delay feedback for highly nonlinear stochastic time-varying delay systems with Markovian switching and Poisson jump, Electronic Journal of Qualitative Theory of Differential Equations, 2022, 49: 1-20.
[2] G. Li, Mean square stability with general decay rate of nonlinear neutral stochastic function differential equations in the G-framework, AIMS Mathematics, 2022, 7(4): 5752–5767.
[3] G. Li, Stabilization of stochastic regime-switching Poisson jump equations by delay feedback control, Journal of Inequalities and Applications, 2022(2022):20.
[4] G. Li, Q. Yang, Stabilisation of hybrid stochastic systems with Lévy noise by discrete-time feedback control, International Journal of Control, 2022, 95(1): 197-205.
[5] G. Li, C. Zeng, Stabilization of stochastic regime-switching Poisson jump equations by delay feedback control, Stochastic Analysis and Applications, 2022, 2022: 20.
[6] G. Li, Q. Yang, Stability analysis of the split-step theta method for nonlinear regime-switching jump systems, Journal of Computational Mathematics, 2021, 39(2): 192-206.
[7] G. Li, Q. Yang, Stability analysis of the -method for hybrid neutral stochastic functional differential equations with jumps, Chaos, Solitons and Fractals, 2021, 150: 111062.
[8] G. Li, Q. Yang, Stability analysis between the hybrid stochastic delay differential equations with jumps and the Euler-Maruyama method, Journal of Applied Analysis and Computation, 2021, 11(3): 1259-1272.
[9] G. Li, Q. Yang, Dynamics of a stochastic Holling II predator-prey model with Lévy jumps and habitat complexity, International Journal of Biomathematics, 2021, 14(6): 2150077.
[10] Q. Yang, G. Li, Exponential stability of -method for stochastic differential equations in the G-framework, Journal of Computational and Applied Mathematics, 2019, 350: 195-211.
[11] Y. Wei, Q. Yang, G. Li, Dynamics of the stochastically perturbed heroin epidemic model under non-degenerate noises, Physica A: Statistical Mechanics and Its Applications, 2019, 526: 120914.
[12] G. Li, Q. Yang, Convergence and asymptotical stability of numerical solutions for neutral stochastic delay differential equations driven by G-Brownian motion, Computational and Applied Mathematics, 2018, 37(4): 4301-4320.
[13] G. Li, Q. Yang, Stability of neutral stochastic functional differential equations with Markovian switching driven by G-Brownian motion, Applicable Analysis, 2018, 97(15): 2555-2572.
[14] G. Li, Q. Yang, Y. Wei, Dynamics of stochastic heroin epidemic model with Lévy jumps, Journal of Applied Analysis and Computation, 2018, 8(3): 998-1010.
[15] G. Li, Almost sure exponential stabilization of hybrid stochastic differential equations with variable delays, Mathematica Applicata, 2021, 34(1): 176-183.
[16] 李光洁,杨启贵,G-Brown运动驱动的中立型随机时滞微分方程的指数稳定性,高校应用数学学报A辑, 2021, 36(1): 41-52.
[17] 李光洁,杨启贵,G-Brown运动驱动的非线性随机时滞微分方程的稳定化,应用数学和力学, 2021, 42(8): 841-851.
[18] 李光洁,王军威,一类带跳的随机HTLV-I感染模型的动力学分析,纯粹数学与应用数学,2020, 36(4): 465-474.
二、项目经历
主持国家自然科学基金青年项目1项、广州市科技计划项目1项、校级科研启动项目1项,参与国家级项目和省级项目多项。
高等数学(1)、高等数学(2)、解析几何、微积分、预科数学1、预科数学2